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Waves at  an unstable horizontal interface between two fluids moving vertically 
through a saturated porous medium are observed to grow rapidly to become 
fingers (i.e. the amplitude greatly exceeds the wavelength). For a diffusing inter- 
face, in experiments using a Hele-Shaw cell, the mean amplitude taken over 
many fingers grows approximately as (time)2, followed by a transition to a growth 
proportional to time. Correspondingly, the mean wave-number decreases ap- 
proximately as (time)-$. Because of the rapid increase in amplitude, longitudinal 
dispersion ultimately becomes negligible relative to wave growth. To represent 
the observed quantities at large time, the transport equation is suitably weighted 
and averaged over the horizontal plane. Hyperbolic equations result, and the 
ascending and descending zones containing the fronts of the fingers are replaced 
by discontinuities. These averaged equations form an unclosed set, but closure 
is achieved by assuming a law for the mean wave-number based on similarity. 
It is found that the mean amplitude is fairly insensitive to changes in wave- 
number. Numerical solutions of the averaged equations give more detailed in- 
formation about the growth behaviour, in excellent agreement with the similarity 
results and with the Hele-Shaw experiments. 

1. Introduction 
Although flows in porous media generally involve extremely low Reynolds 

numbers (the so-called Darcy flows), the existence of several mechanisms which 
could induce instability has been recognized for many years (Horton & Rogers 
1945; Lapwood 1948; Saffman & Taylor 1958). In particular, most of these 
effects can appear at an interface between two fluids in a porous medium. 

Saffman & Taylor pointed out that the instability which may arise at a moving 
interface between two immiscible fluids in a porous medium possesses analogies 
to Taylor instability (Taylor 1950). They considered a small perturbation (of 
wave-number a)  to a horizontal interface, when the steady state was one of 
uniform fluid velocity W upwards, and showed that the initial growth law was 
proportional to exp (2R*aT). Here T is time and 

in which p and p refer to the fluid density and viscosity, while k: denotes perme- 
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ability of the medium and g denotes gravity. The suffixes and refer to the 
upper and lower fluids respectively. 

In  an extension of their work, Saffman & Taylor treated the growth of large- 
amplitude waves, or ‘fingers’, a t  theinterface between immiscible fluids in a 
Hele-Shaw cell. At large times the amplitude, measured from the centre of 
a finger, tends to A*T, and the flow within the finger is uniform. 

When the interface is formed between two fluids which can inter-diffuse, there 
still exists a characteristic dimension AT, where A is a velocity analogous to A*. 
A second characteristic dimension is the growing thickness ( K T ) ~  of the interface, 
where K is an appropriate diffusivity. Elimination of T between these two quanti- 
ties gives the ‘natural’ length scale K/A (cf. Foster 1968.) 

For the instability problem, Elder (1968) observed that there were analogies 
with both Taylor and Rayleigh instability mechanisms, and suggested that the 
most rapidly amplified waves involved wavelengths comparable with the thick- 
ness of the diffusion layer. (See also Heller 1966). 

Elder carried out numerical experiments on the early growth of instabilities 
at  various types of thermal interface, including the sublayer at  a heated hori- 
zontal boundary within a porous medium. The latter case is assumed here to be 
qualitatively applicable to the free interface in a porous medium, and the main 
results may be summarized briefly as follows. (i) After a rapid initial development, 
a small almost-steady induced flow exists due to thermal ‘noise ’ already present 
in the system. (ii) In  the next stage the growth of the disturbance is closely 
exponential, with exponent proportional to  the square of the Rayleigh number. 
It can be shown from this growth law that the disturbance wave-number is 
scaled as A / K .  In  this regime the amplitude increases by at  least one order of 
magnitude. (iii) The system changes to one of approximately constant accelera- 
tion, with displacements, presumably, increasing as the square of the time. 
A further order-of-magnitude increase in amplitude occurs, the disturbance 
attaining a magnitude of at least O( 1); thus this regime is distinctly non-linear 
and the form of the sublayer is considerably modified. 

In Elder’s view, the acceleration arises because progressively more buoyant 
fluid from deeper inside the sublayer is drawn into the disturbance (which now 
resembles a series of ‘blobs’), thus increasing the effective density difference. 
This process continues until the sublayer is largely removed. 

Elder’s numerical results are particularly valuable because they cover a range 
which is extremely difficult to observe experimentally. By comparison, the 
behaviour of large-amplitude waves, or fingers, is easy to observe, but may be 
difficult to treat numerically. This paper is concerned with the latter system at 
an unstable free interface in a porous medium. It should be noted that the study 
does not lead to a fully determinate model, since the initial-value problem is not 
treated here, but amplitudewave-number relationships can be found. 

The equations of the Jlow 
For flows of inhomogeneous fluids at very low Reynolds numbers (defined relative 
to the pore diameter) in a porous medium, the appropriate general equations 
are given below. 
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Continuity: v . q  = 0, 

where q is the volume flow vector. 
Darcy’s law: 

vp-pg+-q P = 0, 
k (3) 

where P is the pressure, g is the gravity vector, k is the permeability of the 
medium and p and p are the density and viscosity of the fluid. 

(4) 
Mass transport : q + + q . V p  = V.(lC.Vp). 

Here E is the porosity, K is the diffusivity tensor and T is time. 
It is convenient to take X and Y axes in the plane of an assumed initially 

horizontal interface, having the origin moving with the interface, and the z axis 
directed vertically upwards. Now, if there is a uniform constant superposed flow 
Wo upwards, the velocity of the interface will be Wo/s. If the flow vector q is now 
measured in this moving system, it is found that (2) to (4) are unchanged in form 
except that the left-hand side of (3) contains a resistance term pW0/k acting in 
the 2 direction. 

For the non-linear problem posed by the system when the wave amplitude is 
large, it will be assumed that the following decomposition of the density profile 
can be made. Let the density of the upper fluid be po + A, of the lower fluidp, - A. 
Further, let g(2, T) be the mean density over the X, Y plane at height 2 (within 
the finger system) so that 

p = (P(X, Y , ~ , ~ ) - ~ ( ~ , T ) } + @ - ( Z , T ) - p o ) + p ,  

= ($+e)A+p,, (5) 

where $(Z,T) = ( p - p o ) / A  and O(X, Y , Z , T )  = ( p - p ) / A  are dimensionless 
variables. Note that 9 represents the variation of the mean density at height 2 
from the central value po, while 0 represents point fluctuations of density relative 
to the mean value over the plane at  the given value of 2. 

Variation of viscosity p with density will be represented approximately by 
the fist two terms of a Taylor expansion 

P M POP + (A/Po) @P/dP)O (9 + el>, (6) 

where the factor (A/p,)(dp/dp), will be assumed small relative to unity. It is 
thus appropriate to apply the Boussinesq approximation with respect to p. 

In  terms of the quantities defined above, let 

be the characteristic velocity for miscible fluids, analogous to the parameter A* 
given by (1) for the immiscible case. Then, if (a, v, w) = q/A is a dimensionless 
flow vector, eliminating the pressure from Darcy’s law (3) gives 

in which V2, signifies a2/aX2 + a2/a Y2. 
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In the equation of mass transport, it  is convenient to assume a simple form 
for the diffusivity tensor. Since the applied flow rate W, is directed normal to the 
interface, it will be assumed that there is a coefficient of longitudinal diffusion 
(combined with dispersion) K,in the direction of W,, and a coefficient of transverse 
diffusion and dispersion K~ ( Q KJ in any direction normal to the direction of W,. 
Both of these coefficients will be taken to be at least approximately constant. 
Then the diffusion term can be simplified. If all the dependent variables are now 
represented by dimensionless quantities, (4) can be written 

(9) 
Kt K K 

#s+Uex+vep+We Z A  --$zz+es+w#z-~v;e-;ezz A = 0, 

where S = AT/€ is a length variable analogous to the amplitude of fingers growing 
between two immiscible fluids. 

The equations (8) and (9), with the equation of continuity, could be replaced 
by difference equations for numerical solution, as done by Elder (1968) for two- 
dimensional flow. Here, however, a form of spatial averaging will be introduced 
(§ 3) in order to simplify the system. The experimental observations which assist 
in formulating this approach are described in § 2. 

2. Experimental observations using Hele-Shaw cells 
For visual studies on flow through porous media, the Hele-Shaw cell has been 

used by several workers, e.g. Saffman & Taylor (1958), Wooding (1963), Elder 
(1967). The analogy can be used for two-dimensional flows only. 

Lamb (1932, 5 330) has summarized the theory of Hele-Shaw flow for a homo- 
geneous fluid. Let rectangular co-ordinates be taken in the plane of a cell sloping 
at an angle B to the horizontal, with the 2 axis directed up the line of greatest 
slope and the X axis horizontal; the fluid velocity averaged across the space 
between the plates at a given point ( X ,  2) is 

q = - (h2/12p) (8/8X, 8/82) (P+gpZsinP), (10) 

where h is the spacing between the plates, P is the pressure, and gsinp is the 
gravity component in the plane of the cell. Then h2/12 is the equivalent perme- 
ability. 

When a Hele-Shaw cell is used to simulate the flow of non-homogeneous fluid 
in a porous medium, it is generally assumed that the variation in fluid properties 
is negligible over distances in the X, 2 plane comparable with the plate spacing h. 
Experimental work with an analogue of the two-dimensional Schlichting jet 
(Wooding 1963) provides a check on the validity of this assumption. Measure- 
ments were made of the distance of advance (8, say) of the leading edge of a 
dense laminar ‘starting plume’ in a Hele-Shaw cell. If Darcy’s law is obeyed, 
the velocities and density in the established part of the plume can be calculated 
from Schlichting’s (1933) theory; in particular, the fluid velocity W, on the axis 
of the plume is known. In  this way it has been found that 

i.e. of a form expected from similarity provided that Schlichting’s theory applies. 
d2,ldT = 0*33Wa, (11) 
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Experimental method 
Two Hele-Shaw cells were constructed from sheets of $in thick polished plate 
glass, having internal boundaries made from strips of rubber insulating tape 
impermeable to water flow. Figure 1 (a)  shows the arrangement. Two boundaries 
parallel to the 2 direction and separated by a known distance were attached 
permanently to one sheet of glass, and served also to control the spacing of the 
plates. A horizontal removable strip, passing through a slot cut in one permanent 
boundary, was used to divide the cell into equal upper and lower portions. The 
first (smaller) cell was not closed at the bottom, mainly in order to achieve 
satisfactory pressure equalization on the two sides of the removable boundary, 
but the second cell was closed as shown. 

A /-Glass plate 

5-55 withdrawal 

(4 (b) 

FIGURE 1. Hele-Shaw cell apparatus for producing an unstable diffusing interface. 
(a) Construction of cell. ( b )  Cell immersed in tilted tank. 

Cell 

Horizontal spacing of boundaries (cm) 
Approximate total height (cm) 
Mean plate spacing h (cm) 
Equivalent permeability k (cma) 
Width of central removable strip (cm) 
Description of solute 

Density of source solution relative to 

Approximate diffusivity of source 
water a t  18" C. pJp, 

solution K (cmz/sec) 

I 
12.0 

30 
0.0351 

0.63 
Potassium 

permanganat e 
1.0041 

1-03 x 10-4 

6 x  10" 

I1 

25.45 
60 

0.0277 

1.27 
Potassium 

permanganate 
1.00695 

6.39 x 10-5 

6 x 

TABLE 1. Dimensions of two Hele-Shaw cells used for experimental work, and brief 
descriptions of source solutions. The value adopted for K is from Fiirth & Ullman (1926). 

Table 1 gives the dimensions of the two cells. In addition to the differences in 
size, quite different values of permeability and solution density applied in the 
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two cases. For this reason, experiments using cell I have been included as useful 
comparisons, although the experiments with this cell were of a preliminary nature 
and were fairly rough. 

Values of A for a cell tilted at  angle p were calculated from the formula 

p - p  kgsinp 

2 P 
A=, 

based on (7) ,  where ps and pw are densities of solution and water respectively, 
and k is the equivalent cell permeability given in table 1. The values of dynamic 
viscosity p and density pw were obtained from tables for water (Dorsey 1940) 
appropriate to the measured mean temperature in each experiment, the change of 
p due to the presence of solute being assumed insignificant. 

Initial filling of each cell was carried out by immersing both plates in distilled 
water in a transparent tiltable tank (figure 1 ( b ) ,  (c), plate 1)  and then clamping 
the plates together with the removable strip in place. The upper half of the 
cell was filled with dilute potassium permanganate solution, using a fine glass 
capillary tube thin enough to pass between the plates and provide a source of 
fluid about 5 cm from the top of the cell. The strength of the source was adjusted 
to provide a broad two-dimensional plume (Wooding 1963) which consisted of 
a core of uniform undiluted solution bounded on either side by a mixing layer. 
As would be expected, the upper edge of the solution collecting above the re- 
movable strip consisted of dispersed fluid exhibiting a gradual change of density 
with height. However, this mixed zone was forced to the top of the cell during 
the filling process, away from the region of interest. 

To initiate an experiment, the removable strip was withdrawn steadily to 
one side of the cell. Inevitably, removal of the strip left some space which had 
to be filled by movement of fluid into the cell; however, the motion was neces- 
sarily a Stokes flow because of the small spacing of the plates, and little mixing 
appeared to be induced at  that stage. Some difficulty was encountered with the 
introduction of long wavelength disturbances (figure 2 ( b ) ,  plate l), but the 
growth rate of these was insignificant in comparison with that of the most ampli- 
fied disturbance. 

Qualitative disturbances 
The photographic sequence of figure 2 (a ) ,  plate 2, shows the features generally 
recorded with the growth of waves at the unstable interface. After formation of 
the interface, some little time elapses before a large number of small waves 
appear. These grow rapidly, and the amplitude becomes greater than the wave- 
length. The waves have developed the character of fingers, resembling those 
described by Saffman & Taylor (1958) and Chuoke, van Meurs & van der Poel 
(1958). 

Apparently, the number of fingers also diminishes with time. There is a ten- 
dency for adjacent waves to coalesce by mutual entrainment-a process con- 
trolled by diffusion-thus decreasing the apparent wave-number. Elder (1968) 
notes a similar effect which he calls the ‘amalgamation of eddies’. The process 
of waves, or fingers, growing and slowly spreading results in considerable mutual 
interference; an irregular pattern is likely to result. 
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An additional complicating effect deserves mention. At an advanced stage 
of development of the fingers, the fronts tend to become unstable and break into 
two separate fingers (figure 2 ( b ) ) .  Thus the process of wave-number decrease 
ultimately could be arrested. A similar instability has been noted in connexion 
with the dense starting plume described earlier in this section, and appears to be 
associated with the increase in transverse length scale. This phenomenon is not 
treated in the present paper. 

Experimental results 

Because of the irregularities in the pattern of growing fingers, only statistical 
averages were extracted from the photographs. The mean wavelength was 
obtained by counting the total number of growing wave crests and troughs visible 
on each photograph, and dividing this number into twice the width of the cell. 
Elder (1968) used a similar method. Naturally, the estimate of the mean improves 
as the number of fingers increases, and the measurements using the larger cell (11) 
show appreciably less scatter than those with cell I. To measure the mean 
amplitude, or half-length of finger, an envelope was sketched around the pattern, 
touching the crests on one side and the troughs on the other, and the area measured 
with a planimeter. The condition W, = 0 was also checked approximately in 
a few cases, by area measurements of the uncoloured fluid, in cell 11. 

Summaries of the data measured from photographs of seven experiments, two 
of these in cell I and five in cell 11, are plotted in figures 3 and 4 as mean wave- 
length wersw time, and as mean amplitude versus AT respectively. A key to the 
plotting symbols is given in table 2. The table also shows that the experimental 
values of A covered a range of about 16 to 1.  Detailed experimental measure- 
ments are given elsewhere (Wooding 1969). 

Angle P 
Cell ("1 
I1 2.87 5 0.05 
I 5-42 
I1 5.75 
I 9.82 
I1 11.5 
I1 24.5 
I1 55.9 

1 0 3 ~  
(cmlsec) 

0-96 
1.68 
1.88 
3.19 
3.85 
7.72 

15.8 

Temp. range 
("C) 

15.3-1 5.6 
14.0-1 4.1 
14.3-15.0 
15'9-16.0 
15-5-15.6 

14.6 
16-5 

Symbol 
(figures 3, 4) 

A 

v 
+ 
0 
0 

0 

TABLE 2. Summary of experimental parameters (see also table 1). 

From figure 3, the mean wavelength measurements tend towards a line defined 

0-0190Ta M 2 ~ ( ~ T ) * 1 0 - 8 2 7  (13) by 

in c.g.s. units, where the diffusivity value K has been taken from table 1. It is 
worth noting that the mean wave-number is close to (KT) - ) .  Since, as will be 
shown later, longitudinal diffusion is not significant at  large times, it seems likely 
that transverse diffusion is the controlling factor, giving an apparent wave- 

31-2 
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Time (h) 

FIGURE 3. Mean wavelength versua time measured from seven experiments. Parameters are 
given in tables 1 and 2. -, mean wavelength measured in q = 1 regime (cf. 0 4) ; --, 
mean wavelength calculated for q = 2 regime; ---- , mean wavelength measured in one 
experiment using cell I, A c 3-19 x cm/sec. 

50 
40 

30 

20 

10 

- 5  
E 
Y u 4  

0.5 
0.4 

0.3 

0.2 

0.1 
1 2 3 4 5  10 20 30 40 50 

AT (cm) 

FIGURE 4. Mean crest trough amplitude versus AT = X measured from seven experiments 
with parameters given in tables 1 and 2. Straight lines fitted to data from five experiments 
using cell I1 represent q = 2 and q = 1 regimes ( S  4). 
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number which decreases steadily due to the decay or entrainment of high wave- 
number fingers. 

One set of experimental results, indicated by the broken line in figure 3, lies 
entirely above the main line. This experiment was carried out in Hele-Shaw 
cell I which was open at both ends, and an appreciable convective flow was taking 
place through the cell due to the excess density of the solution. The calculated 
longitudinal dispersion using Taylor’s (1953) theory (see also Wooding 1960) was 
found to be roughly three times the molecular diffusivity, which could increase 
the growth rate of interface thickness and so reduce the wave-number of the 
most-amplified initial disturbance (cf. Elder 1968). Note that significant longi- 
tudinal dispersion was also present in cell I1 for large A, due to the rapid growth 
rate of the fingers. However, the modification to the wave-number appeared to 
be small in this case, indicating that the ‘selection’ of the dominant disturbance 
had occurred at  an early time when velocities were small. 

Most of the points measured at early stages of the experiments lie above the 
heavy full line in figure 3, From the previous paragraph, these points indicate 
the possible existence of an early rkgime of relatively low wave-number, rather 
than a dispersion effect. 

As figure 4 shows, the experimental results for mean amplitude fall close to 
a pair of straight lines on a double-log plot with AT in the abscissa. 

2, = 0.0732S2 (8 < 6.1 cm) (14) 

and 2, = 0.4465 (S > 6.1 em), (15) 

where 2, is one-half of the crest-trough amplitude in em. It is apparent that the 
effect of diffusivity changes upon amplitude is quite small (cf. Slobod & Thomas 
1963). This is consistent with the form of equation (9). If longitudinal dispersion 
is neglected, as described in 9 3, a change in A affects only the transverse diffusion 
term, and the main consequence is the change of wave-number. It follows that 
the amplitude depends principally upon the variable 8. 

From (14), it appears that the experimental results overlap the final phase 
(3 in Q 1) of Elder’s numerical experiments. 

The second relation (15) is particularly interesting since the miscible fluid 
fingers appear to grow at less than one-half of the growth rate of fingers between 
immiscible fluids. A likely explanation is that the density distribution across 
a finger resembles a diffusion profile, as would be expected if transverse diffusion 
and associated fluid entrainment were taking place. 

3. Approximate equations for finger growth 
A detailed analysis of the growth problem is not attempted in this paper, but 

some of the observed average properties of large amplitude fingers may be derived 
from the equations (2), (8) and (9) of 5 1. It will be noted that only (9) is non- 
linear, and that the equation involves two weakly-coupled parts, the first five 
terms being nearly aperiodic in the X ,  Y plane (i.e. composed largely of contribu- 
tions dependent upon only 2 and S), while the remaining four terms are quasi- 
periodic in these variables. 
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For large S, the ratio of terms involving q5zz and & respectively in (11) is 
O(K,S/AZ~). Hence, if the typical Z scale increases more rapidly than S4, as the 
experimental results show, then the term in $zz may be neglected for large S. 
A consideration of numerical values appropriate to the experimental work indi- 
cates that this approximation could be assumed valid for all of the recorded 
measurements. An argument similar to the above applies also to the term 
involving OZz.  In  (8)) the situation is a little different; from experiment the 
typical scale in the X, Y plane does not increase more rapidly than S4, and w,, 
ultimately becomes negligible relative to V:w. Then (8) can be integrated to give 

e + w  = 0. (16) 

Equations governing averaged quantities 

Now suppose that the saturated medium is bounded by a cylindrical container 
of arbitrary cross section with vertical impermeable walls. The wall boundary 
conditions are that the normal components of velocity and 8 gradient vanish; 
but, if it is also assumed that the cross-sectional area is large enough to contain 
many fingers, the influence of the sidewalls upon quantities such as horizontal 
wave-number will be small. When (16) is used to eliminate r3 from (9)) and the 
latter equation is averaged over the entire cross section at a given value of 2, the 

(17) 
result is 

Again, let (9) be multiplied by w / ( ~ ) ~  and the avera<ge taken over the same 
cross section, to give 

- 
$&g = w;. 

(18) ) - -  
2 4 -  - (w2)4 - ($z--p2(a,s) -+w%/(w”)S, K 

where the slowly-varying function a is an ‘equivalent mean wave-number ’, 

(19) 
defined by 

A necessary assumption is that the observed mean wave-number ( 5  2) does not 
differ greatly from this quantity. In  (18)) the term involving w2 will be neglected. 
If (9) is multiplied by w2 and averaged as before, the growth rate of G i s  found 
to depend primarily upon the small quantity {#(w”)2-w4)z which, in fact, is 
zero for w sinusoidal. Also 3 is expected to be small from the nearly symmetrical 
properties of the flow. 

Equations corresponding to (17) and (18) have been derived for the problem 
of flow in a vertical tube filled with saturated porous material (Wooding 1962). 
In  that case, a fairly satisfactory approximation was made for the transverse 
density distribution from the geometry of the tube cross section, leading to an 
estimate for the dominant wave-number. Such information does not exist in the 
present case since the boundary conditions are assumed to be unrestricting. An 
equation involving aB can be derived by multiplying (9) by V2,w and averaging 

- - -  
a2w2 = w$ +- w%. 

____ over X and Y to give 
K1 

Aa 
a, = - (a4 - (v;w)Z/w2) 
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and cz8 < 0 from (19) and (20) using the Schwartz inequality. Continuation of the 
averaging process to obtain an equation for (V:w)2, and so on, evidently leads to 
an unclosed set of equations. In  this paper ( 8  4), a closed system is obtained by 
assuming a form for a2 in (18) based upon similarity considerations. 

Characteristic form and jump conditions 

As already observed (Wooding 1962), the differential equations (17) and (18) 
form a hyperbolic system, and the possibility exists of discontinuities arising in 
qi and 2. In  characteristic form the equations can be written 

dZ/dS = * (2w2)&, (21) 

the upper signs referring to ascending characteristics and the lower signs to 
descending characteristics. 

In  the present problem it is necessary to suppose that the fronts of all ascending 
fingers (say) fall within a fairly narrow zone centred at  Zm(S), and to replace this 
zone by a discontinuity. Let q& denote the dimensionless density just ahead of 
the advancing fingers and assume that = 0 there, i.e. that the fluid is not in 
motion. Let the suffix m now refer to any quantity measured just behind the 
jump. If (17) and (18) are each integrated over a short interval in 2 which 
contains the zone centred at Z,, the two following jump conditions result. 

(23) 
where U is the jump velocity, and the f signs on the right have been added to 
include both ascending and descending jumps. 

dZ,/dS = U ( 8 )  = ${qio(8)-$,) = & ($Wii)$, 

Non-invariance of the averaged equations 

Lax (1954) was the first to point out that the ‘weak’ solutions associated with 
a given non-linear hyperbolic system depend upon the form in which the equa- 
tions are written. Owing to the presence of discontinuities the above system is 
not Lipschitz continuous, and its solut5on will be non-invariant in that way; 
e.g. if the weight function w/(G)& is replaced by w (equivalent to a non-linear 
transformation of (18))) the differential equation is effectively unchanged but 
a new set of jump conditions and new solution result. Generally, only one solution 
is physically appropriate. Since (18) is not a ‘standard’ conservation law, its 
correct form is not clear a priori. However, subsequent comparison of the 
experimental results with numerical solutions of (17) and (18), subject to (23), 
appear to show that the chosen formulation is physically correct. 

4. Similarity solutions 
The power law growth of finger amplitude observed experimentally suggests 

that the more obvious features of the system might be modelled by similarity 
aolutions of relatively simple form. Let 

y = Lq-12/Sq, ~,5 = (S/L)q-lF({), (2W2)* = (S/L)Q-lG([), (24) 
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where L is a length scale and q an exponent, both at present unspecified. Then 
(1  7) and (1 8) become a pair of simultaneous ordinary differential equations. 

q1;F' + Gc'  = (q - 1) F ,  (25) 

in which 

and ( )' signifies d /d6  The S dependence of a2 is not known a priori; however, 
for (25) and (26) to be independent of X it is necessary either (i) that y should be 
negligible, or (ii) that y should be independent of X. Case (i) is probably not of 
direct interest here because it can only hold for waves which, from $ 1 ,  would 
have very slow rates of initial growth. In  any event y must ultimately become 
significant for large enough 8. If a power law growth then appears, (ii) must 
apply and a cc 8-4, in accordance with the experimental observations. 

An additional complication arises from the unknown f; dependence of a2, and 
hence of y. However, the main solution properties are unlikely to be greatly 
affected by slow variations from this source which will, therefore, be neglected. 

In  terms of the new variables defined in (24), the jump conditions (23) become 

Since Fo must be independent of S, it is evident that #o cc Xq--1; if the power law 
dependence of q50 upon X is known, q may be determined, or vice versa. Also, 
as [ = 1;, = constant at the jump, (24) gives 2, cc Sq for the growth rate of 
amplitude. The experimental results of figure 4 indicate the existence of a flow 
regime with q M 2 followed by a rbgime for which q M 1. A finite transition zone 
probably separates these two power law regimes. 

Similarity properties when q = 1 

For the case of fingers advancing into homogeneous still fluid, q50(X) = 1 in (29) 
so that q = 1, Fo = 1 and the unknown length L disappears. Then F can be 
eliminated from (25) and (26) to give 

G' = -Y/(G/C-C/G). 

The appropriate solution of (30) is 

G/Cl = { 1 + (y  - 1) t}-Y/(Zy--2), 

where the parameter t = ['IG'. (32) 

Here F and G are odd and even functions of 6 respectively. The constant Cl(y) 
of integration appears as a scale factor because of homogeneity in the ratios 
F:G:C. Solution curves of F/Cl and Cr/Cl, taking positive 6/Cl as abscissa, are 
given in figure 5 (a )  for selected values of the parameter y. Note that the solu- 
tion (31) simplifies a t  particular values of y. For example, when y = 5, then 
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FIG‘, = 2</3G and G/C, = 1 - c2/3G2 and the numerical values fall within about 
1 yo of the experimental results. 

Figure 5 (a) can be used to obtain a graphical solution of the system (31) and (32) 
subject to the discontinuity conditions (28). Four relations are available for the 
five quantities y, C,, F,, Q, and <,; the problem could be rendered unique if 
either y or <, were known from appropriate initial conditions. In  figure 6 the 
dependence of F,, G ,  and y = y1 upon is shown. A single p o i n t a  mean result 
from the five experiments using cell I1 described in $2, and representing the 
observed values of y1 and <,-falls on the y1 curve. 

E 

FIGURE 5. Solution curves of equations (25) and (26) for similarity variables PIC and G/C 
veraua [/C. -, jump condition (28) relating Crn to G, and corresponding values of B’,. 
(A second condition from (28) involving Fo-B’,,, (not shown) sets C.) ----, locus of 
maxima of [ which, by jump conditions, fall outside physical range. 0 ,  experimental 
values. (a) q = 1, C = C,(y); ( b )  p = 2, C = C,(y). 

In  general, <, decreases as the mean wave-number is increased, since a greater 
mean density gradient is needed to maintain steady flow at higher wave-numbers. 
From (18), the steady flow condition is $z = &/A) cc2(Z, X), and this is formally 
identical to the criterion for neutral stability of a Fourier component of arbitrary 
amplitude with horizontal wave-number a and zero vertical wave-number. In  
similarity variables the condition is P‘ = y, which also satisfies the problem as 
[+O. That is, the mean density gradient at  the centre of the fingers when 
q = 1 corresponds to the neutral value. It is also the point of minimum gradient. 
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FIGURE 6. F,/q, Gm/q and ya, where q = 1, 2, as functions of Cm. By definition Cm 
has the same value for both dgimes, so that y undergoes a transition ye + yl. 

Similarity properties when q = 2 

For this flow regime, Elder (1968) proposed a physical model (3 in 9 1) in which 
acceleration continues while fluid from the diffusion layer is being drawn into 
the fingers, thus progressively increasing the effective density difference. The 
implication is that q5,(S) increases with S, but does not further specify its form. 
Since q w 2 from experiment, (29) gives q50 oc S over a finite range of 8. Therefore, 
assume the approximate representation 

q50(X) = +s/L’ (8 < E ) ,  

= + 1  (S  > L’)y (33) 

the sign depending upon the direction of motion of the discontinuity. Here L‘ 
is a further length parameter. 

The quantity c,,, corresponds to the location of the discontinuity, and its value 
may be taken constant through both the q = 2 and q = 1 regimes of flow. Then, 
in (24), let L be taken equal to the value of S ( = 6.1 em) at  which the two experi- 
mental curves (14) and (15) intersect. It follows at once from the discontinuity 
conditions ( 2 8 )  that (Fo- Fm)/q and GJq are unchanged when q changes, so that 
both Fo- Fm and Gm decrease by a factor of 2 at S = L. This corresponds to the 
difference in slope of the lines (14) and (15) at the point of intersection in figure 4. 

For q = 2, the quantities F/C2 and QjC, have been obtained as functions of 
[/C, by numerical integration of equations (25) and (26) (figure 5 ( b ) ) ,  where 
C,(y) is a new scaling constant. A graphical fit of the jump conditions (28) to 
this solution gives Po = 2, and (29) and (33) give L = 2L’. Thus C, and y can be 
determined as functions of 6. 

The dependence of y = yz as well as Fm/q and GJq upon cm for q = 2 is shown 
in figure 6. This indicates that y is smaller when q = 2 than when q = 1 in the 
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relevant range of Cm. In  fact, if cm M $, yz w 0.40, corresponding to a mean wave- 
number about 0.8 times that observed for the case q = 1. This result is in fair 
agreement with measurements made at early stages in most experiments 
(figure 3). 

Transition rdgime 
The observed increase in y, when q decreases from 2 to 1, appears reasonable 
provided that the transition between the two regimes is characterized by a 
reduced rate of decrease of the wave-number in the physical X, Y plane, and 
if S at least doubles during the transition. Little can be deduced from similarity 
considerations, and the transition is examined in more detail numericalIy ($5). 

5. Numerical solution of the averaged equations 
For a solution using a high-speed digital computer, the system of hyperbolic 

equations (17) and (18), subject to jump conditions (23), is generally preferable 
to the characteristic form (21) and (22). 

Let the equations be rendered fully non-dimensional by putting 

s = SIC, z = Z/L', AZ(s)  = K ~ ~ L ' I A  (34) 

5% = W ' 2 ) # ,  (35) 

(36) 

and for convenience let w' = ( 2 2 ) i .  Equations (17) and (18) become 

(1% w'h = A - A2(s), 
the form of (36) being the most suitabIe one for a finite difference scheme (Fox 
1962). 

Instead of applying two sets of conditions at the jumps located symmetrically 
with respect to x = 0, it  is more economical to consider one-half of the flow field, 
say for z 2 0, and to apply a symmetry condition on the axis. Then, from (23) 
and (33), 

at z = z,, where 

Onz=O, 

Finite-difference method 

An efficient forward differencing scheme is due to Lax (1954). Its use is described 
in detail by Keller, Levine & Whitham (1960) and by Fox (1962). The particular 
form of time difference chosen by Lax to stabilize the equations introduces a 
small artificial diffusion term with coefficient ( A z ) ~ / ~ A s ,  where As and Ax are 
the step lengths. The mesh size and ratio As/Az must be chosen so that the 
diffusion coefficient is small; otherwise the solution drifts into error although there 
is adequate stability. A linearized analysis of the non-linear finite difference 
equations gives the usual stability criterion 

AslAz < llw', (40) 
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which, from (21), corresponds also to the Courant condition. It has been found 
by trial that a square mesh As = Az is appropriate. For a fixed step length, ad- 
vancing in s is equivalent to refining the mesh (Lax 1954). 

To solve the equations at  the advancing jump, an additional relation is 
needed between the quantities at the jump (Fox 1962). Keller, Levine & Whitham 
achieve this by differentiating the jump velocity with respect to time. With this 
method, (37) gives two alternative formulae; that adopted here is 

using (36). Again, following the above authors, the equations at  the jump are 
replaced by an implicit difference scheme using backward s differences which is 
unconditionally stable; this is solved by iteration. Details of the method are given 
by Wooding (1969). 

The initial conditions can be chosen from similarity considerations. A small 
starting value of s is taken so that the first values fall within the q = 2 rkgime, 
and corresponding values of [, and y2 are obtained from figure 6. Then 

z, = g s 2 ,  u = 2 g p )  (42) 

where [z = &,,Lf/L. Starting values of q5m and wi,, are calculated from (37), and 
approximate values of $ and wf at the intermediate mesh points are found by 
linear interpolation from #m and wl, using (39). 

A plausible form for A2(s) is based on similarity. Let A2 = y2/s for s < 1, i.e. 
for the duration of the q = 2 rkgime. Presumably the behaviour of A2 will change 
at  s = 1 when q50(s) changes according to (38), and A2 will begin to decrease at  
a slower rate. The final form must be A2 = yl/s for s $. 1, where y1 (> y2)  is 
chosen from figure 6 at the given Cm. Two simple alternative assumptions will 
be made for the transition of A2 between these two forms. Both involve taking A2 
constant. In  the first case it is assumed that the transition begins at  s = 1, and 
in the second at  s = 2 (1 and 2 respectively in figure 7). Most of the actual transi- 
tion probably lies within the area bounded by these two assumptions. 

Although the numerical method does not trace characteristics, it is useful to 
map the backward characteristic (I?- in figure 7)  from z = z, at s = 1,  since this 
separates the p = 2 and transition rkgimes. At z = 0 the characteristic crosses 
a mirror image characteristic (F,) which has started from the opposite jump at  
the same value of s; the second characteristic then separates the transition 
from the region in which the Q = 1 rkgime is established. These two characteristics 
are traced numerically using (2 1) .  

Numerical results 
Figure 7 shows the two finite difference solutions with parameter values close to 
the experimental values, for the two above assumptions concerning the wave- 
number transition. The similarity solutions are shown as broken lines. 

In the q = 2 rdgime, the numerical solutions follow the similarity solutions 
quite closely, except for a small wavelike perturbation which possibly arises 
from the starting conditions. At s = 1 the rate of increase in wih is suddenly 
reduced, due to the fact that q50 has become constant. However, w;, continues to 
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1 -  - - - 
- 

0.5 - 
0.4 - 
0-3 - 

0.03 - 
0.02 - 

0.01 1 I I I I 1 1 1 1  I I I 1 I 1 1 1 1  

0.1 0.2 0.3 0.4 0.5 1 2 3 4 5  10 

8 = s/L' 

FIGURE 7. Finite difference solutions of equations (35) and (36), subject to conditions (37) 
to (39). ----, similarity solutions. Numerals 1, 2 : alternative assumptions for transition 
of y. : ascending and descending characteristics which originate at start of transition. 
Parameter values: c,,, = 0-444, y1 = 0.667, y2 = 0.400, L' = &L = 3-06 cm. 

increase because the advancing fingers contribute to the density difference; this 
contribution ceases only with the arrival of the second separating characteristic, 
which occurs a t  about s = 2. The decrease of $,,, for 1 < s < 2 is a consequence 
of (37) and the constancy of $,,. For s > 2 a readjustment occurs with wk de- 
creasing slightly. There is little doubt that the numerical solution finally tends 
to the similarity solution for q = 1. The solution for z, versus s follows similarity 
values very closely except in the transition region. 
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Figure 7 also illustrates changes of amplitude when the assumed form of the 
wave-number function A2 is changed. The qualitative character of the solution 
is clearly unaffected, and the variation in z, is probably too small to be detected 
experimentally. 

6. Conclusions 
A t  first glance, the apparent decrease of mean wave-number with time is 

surprising. However, an increase in scale is observed at the nose of a starting 
plume in a porous medium (8 2 )  because the scale of the jet-like flow behind the 
nose increases as (KT)). In the present problem, the experimental evidence shows 
that the mean wavelength increases approximately as ( K T ) ~ ,  but the fingers 
are so closely spaced that a scale increase is not possible without changes in the 
flow structure. A process of mutual entrainment may exist, the rate being con- 
trolled by diffusion, with the smaller fingers generally being absorbed by the 
larger. 

The properties of the similarity solution with g = 1 indicate that a condition 
of near-neutral equilibrium is maintained as the fingers grow. Near the finger 
fronts, density gradients exceed the neutral value and a further instability can 
occur, resembling that described by Saffman & Taylor for a sharp interface. 
If the growth rate of this instability becomes important relative to the established 
h g e r  growth rate, the equilibrium regime could be significantly modified. This 
did not appear to be the case in the experimental range considered. 

Elder's suggestion-that acceleration continues while fluid from the diffusion 
layer is being drained into the fingers-provides a model which fits the observa- 
tions satisfactorily. The process is not understood quantitatively for either L' 
or L to be calculated, but for the simplified model (33) the ratio LIL' = 2 appears 
to be established, and L can be measured. In  the experiments described in $ 2 ,  
L' w 3 cm, and uniform fluid begins to enter the finger system when 2, M 0.65 cm. 
That is, the finger amplitude at the start of the transition is quite small. 

The analytical work was supported primarily by Grant no. 1600ODGY, 
Federal Water Pollution Control Administration (U.S.A.), during the author's 
temporary research appointment at the California Institute of Technology 
(W. M. Keck Laboratory of Hydraulics and Water Resources). Experimental 
work was performed at C.S.I.R.O. Numerical computations described in 0 5 were 
performed on the C.S.I.R.O. CDC 3600 computer. 
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FIGURE l (c ) .  General view of Hele-Shaw apparatus. 
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Plate 1 

(Tacing p. 496) 
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FIGURE 2 (a). Growth of lingers in cell I; A % 1.68 x cm/see. 
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FIGURE 2 ( b ) .  Break-up offingor fronts due to instability in cell 11; A % 15.8 x cm/sec. 
An initial long wave disturbance which occurred at  the interface in this experiment grew 
very slowly, and apparently did not affect the dominant wave growth. 
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